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Abstract
We studied the transport of graphene electrons through lateral magnetic barriers. The relativistic
electrons experience resonant tunneling through two adjacent but opposite magnetic field
regions. For a periodic structure fabricated with such magnetic barriers, the resonant tunneling
peak further splits into several sharp spikes. The conductance also shows oscillation with the
Fermi energy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, graphene has attracted tremendous interest from
both theoretical and experimental physicists because of its
gapless semiconductor property, which implies the possibility
of extensive applications in nanoelectronics [1–7]. The linear
dispersion relation of the graphene electrons was verified by
direct observation of the unconventional quantum Hall effects
at room temperature [8–10]. The Dirac-like quasi-electrons
result in unusual consequences in the electronic transport
properties, owing to its chiral characteristics. One of the
peculiar phenomena is the complete transmission of Dirac
fermions through a high enough electrostatic potential, or
the so-called Klein paradox. However, this feature makes
it a weakness for the graphene to be fabricated into a
heterostructure since Dirac electrons cannot be confined by
electrostatic potentials. Many attempts have been made to
overcome this shortcoming [11–13].

Recently, several authors have proposed an alternative way
of confining the graphene electrons by employing magnetic
field barriers or magnetic quantum dots [14–16]. Virtually,
mesoscopic transport through magnetic barriers has been
extensively studied for Schrödinger electrons in conventional
semiconductors [17–21]. In this work, we extend the analysis
of [14] and discuss the properties of the graphene electrons
tunneling through a lateral magnetic barrier as well as a
magnetic superlattice. We study the extreme case that
the magnetic field is uniform in a limited region. This
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means the asymptotic states are free waves so that the
usual definition of transmission coefficient is well defined
within the conventional transfer Hamiltonian formalism of
the tunneling current. For a barrier which is composed of
two magnetic field regions adjacent but opposite in direction,
the incident electron experiences resonant tunneling according
to its transport energy (the Fermi energy of the graphene).
It is found that the transmission probability oscillates with
the incident angles. When the electron transports through a
magnetic superlattice (figure 1), then the resonant peaks further
split into several sharp spikes. In general, for a n-period
superlattice there are (n−1) splitting spikes, similar to the case
for the Schrödinger electrons [23]. The physical mechanism of
the resonant transmission is discussed.

This paper is organized as follows. Section 2 describes
the formalism. Section 3 presents the numerical results of
the transport of the graphene electron by the transfer matrix
method. We also discuss the implications of the resonant
tunneling. Section 4 is a brief summary.

2. Formalism

We consider the ideal Dirac fermion in graphene with a lateral
magnetic field perpendicular to the plane, B = B(x, y)êz . The
static massless Dirac–Weyl equation for the spinor ψ(x, y) =
(ψ+, ψ−)T is

vFσ ·
[

p + e

c
A(x, y)

]
ψ(x, y) = εψ(x, y), (1)
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Figure 1. Schematic description of (a) the magnetic field and (b) the
corresponding vector potential.

where p = −i(∂x, ∂y)
T is the momentum operator (setting h̄ =

1) and A(x, y) is the magnetic vector potential. σ = (σx , σy)

are the 2 × 2 Pauli matrices. We set the Fermi velocity vF = 1.
We study a two-dimensional periodic magnetic field

which is translation-invariant in the y direction and points
alternatively up and down along the x direction, with a
periodicity of 2d (see figure 1). The explicit expression is
written as

B(x) = B0

2N−1∑
n=0

(−1)nθ(x − nd)θ((n + 1)d − x) (2)

for 0 < x < 2Nd and B(x) = 0 otherwise. Here θ(x) is
the Heaviside step function and N is the number of periods.
By choosing the Landau gauge, the vector potential A(x, y) =
(0, A(x), 0) has the sawtooth form in region II, i.e. 0 < x <
2Nd:

A(x) = B0

2N−1∑
n=0

(−1)n[x − (2n + 1)d/2]
× θ(x − nd)θ [(n + 1)d − x], (3)

A(x) = −B0d/2 for region I, i.e. x < 0, and A(x) = −B0d/2
for region III, i.e. x > 2Nd . As the momentum in the y
direction is conserved, equation (1) is reduced to two coupled
equations:

[∂x ± (ky + A(x))]ψ∓(x) = iεψ±(x), (4)

where ky is the momentum in the y direction. Here all the
quantities are set to dimensionless units by rescaling: the
magnetic field B(x) → B0 B(x), the vector potential A(x) →
B0�B A(x) with the magnetic length �B = √

c/eB0, the
wavevector k → k/�B , the electron energy ε → ε/�B , the
coordinate x → �B x and the width of a single magnetic barrier
d → �Bd . Consider an electron with wavevector k = (kx , ky)

entering from the left region I at incident angle θ ; one has
kx = ε cos θ , ky = ε sin θ + A(x)|x<0. The wavefunction
in region I is written as

ψI(x, y) =
(

1
eiθ

)
eikx x+iky y + r

(
1

−e−iθ

)
e−ikx x+iky y . (5)
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Figure 2. Polar graphs for the dependence of transmission
coefficient T on incident angle θ . The radius of the semicircle
represents the transmission coefficient T . (a) One period of the
magnetic superlattice (N = 1) for d = 2 and ε = 6.3. (b) Four
periods of the magnetic superlattice (N = 4) for d = 2 and ε = 5.

The outgoing angle φ in region III is obtained by
momentum conservation in the y direction:

ε sinφ + A(x)|x>2Nd = ε sin θ + A(x)|x<0. (6)

Up to an overall normalization factor, the scattering state in
region III is

ψIII(x, y) = t

(
1

eiφ

)
eikx x+iky y . (7)

The transmission coefficient T = |t|2 is then calculated by the
transfer matrix method [22].

According to the Landauer–Büttiker formulae, the ballistic
conductance is calculated with the transmission coefficient as

G/G0 =
∫ π/2

−π/2
T (εF,

√
2εF sin θ) cos θ dθ, (8)

where θ is the incident angle and εF is the Fermi energy.
G0 = 2e2m∗vF L y/h2, where L y is the width of the sample
in the y direction, m∗ is the effective mass of the graphene
electron and vF the Fermi velocity.

3. Numerical results

In the following, we have typically set B0 = 0.05 T or
lB = 115 nm. We choose the length of one period of the
magnetic superlattice as 2d = 2lB and the corresponding
transmission energy ranges from 0 to 39.8 meV. Figures 2(a)
and (b), respectively, display the transmission coefficients of
the electron transport through one period (N = 1) and four
periods (N = 4) of the superlattice according to the incident
angles. For the one-period case there is a resonant peak
at θ ≈ −80◦. In figure 2(b) the transmission probability
begins to oscillate with the incident angles and the resonant
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Figure 3. Energy dependence of the transmission T through a single
magnetic barrier (N = 1) for incident angle θ = 0 (solid curve),
θ = −60◦ (dashed curve) and θ = −82◦ (dashed–dotted curve),
respectively.

Figure 4. Resonant tunneling energy versus resonance number at
normal (circles) and glancing (squares) incidence, which respectively
reveal a linear and a quadratic relation.

peaks in the one-period case further split into three sub-
peaks. In the mean time, the oscillation amplitudes become
larger.

Figure 3 shows the energy dependence of the transmission
probability for a single magnetic barrier (N = 1). It is not
surprising that there are resonant tunnelings at some specific
energies, as is observed in the case of Schrödinger electrons.
In this figure we compare the differences between normal
and glancing incidence. At glancing incidence, the resonant
peaks become sharper. We observe that there are two distinct
relations between the resonant number (n = 1, 2, 3, . . .) and
the resonant energy εres. For normal incidence, the fitted curve
shows εres ∼ n, whereas for glancing incidence, εres ∼ n2 (see
figure 4). The implications of these relations are accounted for
as follows.

We change the magnetic gauge as A(x, y) = (A(y), 0, 0),
with A(y) = By for 0 < x < d and A(y) = −By for
d < x < 2d . The magnetic phase shifts 
φmag = ∫

A(r) ·
dr = ∫

A(y) dx in the two opposite magnetic regions exactly
offset. Hence the phase shift of the transporting electron wave
is 
φ = 2kxd , which should satisfy the resonant condition,
i.e. 
φ = 2nπ (n is an integer). For the normal incidence
(ky = 0), kx = ε leads to εres = nπ/d . On the other
hand, for the glancing incidence (|kx | 	 |ky|) of a momentum

eigenstate in the y direction we have εres =
√

k2
x + k2

y ≈
ky(1 + k2

x/2k2
y) ∝ n2.

Figure 5. Energy dependence of transmission T through four periods
of the magnetic superlattice (N = 4) at normal incidence.

Figure 6. Energy dependence of the ballistic conductance through
magnetic superlattices for N = 1 (solid curve) and N = 4 (dashed
curve), respectively.

Figure 5 plots the transmission coefficient for four periods
of the magnetic superlattice (N = 4). At normal incidence,
the resonant peaks in the N = 1 case further split into a
fine structure with N − 1 sub-peaks. This fine structure is
analogous to the Fabry–Perot interference and was also found
in the transport of the Schrödinger electrons [24].

Finally, we calculate the ballistic conductance of the
graphene electrons by the Landauer–Büttiker formulae.
Figure 6 shows the Fermi energy dependence of the
conductance for one period (solid curve) and four periods
(dashed curve) of the magnetic superlattice. It reveals the
oscillating characteristics as in the Schrödinger electron cases.
The more periods of the superlattice, the more prominent the
oscillation becomes.

4. Summary

We have studied the transport of graphene electrons through
a magnetic superlattice. The resonant tunneling reveals the
same features as in the Schrödinger electron cases. The distinct
relations of resonance between normal incidence and glancing
incidence as well as their implications are discussed. We
mention that our results are valid for such a sharply fluctuating
magnetic field as well as for other periodic structures such
as the sine function type. From the experimental aspect,
nanodomains of magnetic superlattices had been constructed
in (AlGa)As/GaAs heterostructures [25]. One expects that
such magnetic complexes can also be built in current graphene
samples.
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